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Motivation

® Previous Methods
¢ Incorporate user and product information into sentiment classification indistinguishably.

® Our Observation
¢ In reviews, some words or sentences show strong user’'s preference, and some others tend to indicate product’'s characteristic.

¢ Opinions (rational evaluation) are more related to products and emotions (emotional evaluation) are more centered on users.

® |dea
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The bar area is definitely good ‘people watching” and i love the modern contemporary d ecor.

B user’'s emotion (emotional evaluation) B product’s characteristic (rational evaluation)

¢ Use attention mechanism to model review representations from two views: from the user and product perspective respectively.

Proposed Model
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® Combined Strategy

¢ Add a softmax classifier respectively to
three review representations: d u, d _p,
and [d u;d p].

¢ The loss_ 2 and loss 3 are designed to
learn to review representations from two
orthogonal views, from users and prod-
ucts, respectively.

® Loss Function
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Experiments

® Datasets
Datasets | #classes | #docs | #users | #products | #docs/user | #docs/product | #sens/doc | #words/sen
IMDB 10 84,919 | 1,310 1,635 64.82 51.94 16.08 24.54
Yelp 2013 S 78,966 | 1,631 1,633 48.42 48.36 10.89 17.38
Yelp 2014 5 231,163 | 4,818 4,194 47.97 55.11 11.41 17.26
® Metrics
- e Overall Results
¢ Accuracy Accuracy =
N ) IMDB Yelp 2013 Yelp 2014
¢ RMSE RMSE = \/ 21 (gi; —pri) Models Acc. | RMSE || Acc. | RMSE || Acc. | RMSE
Models without user and product information
Majority 0.196 | 2.495 | 0.411 | 1.060 || 0.392 | 1.097
® EAff f r and Pr Information Trigram 0.399 | 1.783 || 0.569 | 0.814 | 0.577 | 0.804
ect of User ana oduct ormatio TextFeature 0.402 | 1.793 || 0.556 | 0.845 | 0.572 | 0.800
Models IMDB Yelp 2013 Yelp 2014 AvgWordvec+SVM 0.304 | 1.985 || 0.526 | 0.898 | 0.530 | 0.893
. Acc. | RVDL || Ace. | RVMSE | Ace. | RMDE SSWE+SVM 0.312 | 1.973 || 0.549 | 0.849 | 0.557 | 0.851
NSCRLATILSTN) [ 0480 125 [[06% [0 @1 et | 0 Paragraph Vector | 0.341 | 1814 | 0.554 | 0832 | 0564 | 0.502
HPA 0.493 | 1.326 | 0.641 | 0.681 | 0.646 | 0.673 RNTN+Recurrent 0.400 1.764 0.574 | 0.804 0.582 | 0.821
HUAPA 0-546 | 1.245 | 0.678 | 0.642 || 0.636 | 0.626 UPNN(CNN and no UP) || 0.405 | 1.629 || 0.577 | 0.812 || 0.585 | 0.808
A NSC+LA only uses review text. Besides local text, HUA uses NSC 0.443 | 1.465 || 0.627 | 0.701 0.637 | 0.686
user information, HPA incorporates product information, and NSC+LA 0.487 | 1.381 0.631 | 0.706 || 0.630 | 0.715
HUAPA considers user and product information meanwhile. NSC+LA(BILSTM) 0.490 | 1.325 0.638 | 0.691 0.646 | 0.678
Models with user and product information
- : Trigram+UPF 0.404 | 1.764 | 0.570 | 0.803 || 0.576 | 0.789
® Effect ot the Ditrerent Weighted Loss TextFeature+UPE || 0.402 | 1.774 | 0.561 | 1.822 || 0.579 | 0.791
JMARS N/A 1.773 N/A | 0.985 N/A | 0.999
\ \ \ IMDB Yelp 2013 Yelp 2014 UPNN(CNN) 0.435 | 1.602 0.596 | 0.784 0.608 | 0.764
L 2 2 |[Acc. | RMSE || Acc. | RMSE || Acc. | RMSE UPNN(NSO) 0471 | 1.443 || 0.631 | 0.702 N/A N/A
1.0 { 0.0 | 0.0 || 0.538 | 1.229 || 0.669 | 0.658 | 0.675 | 0.647 LUPDR 0.488 1.451 0.639 | 0.694 0.639 | 0.688
0.7 { 0.3 | 0.0 || 0.541 ;_.239 0.672 | 0.644 0.680 | 0.641 NSC+UPA 0.533 1.281 0.650 0.692 0.667 0.654
8-1 8-2 8-; 8-2;“6) lgig g-g;g 8-2’;‘2 8-2;2 8'22 NSC+UPA(BIiLSTM) || 0.529 | 1.247 || 0.655 | 0.672 || 0.669 | 0.654
: : : : : : : : : HUAPA 0.550 | 1.185 || 0.683 | 0.628 | 0.686 | 0.626
Case Study for Visualization of Attention
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review 2: the bar area 1s definitely good "people watching'

review 1: we love the ambiance and how cool this place 1s. | ,
and 1 love the modern contemporary decor.

A In review 3, the word “good” indicates the product’s positive
characteristic, and the word “disappointed” shows user’'s neg-
ative sentiment. Our model catches the inconsistency be-
tween user’'s emotion and product’'s characteristic.

review 3: much of 1t was quite good but I was disappointed

with the spider roll.



