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Background

I Success of Transformer in NLP tasks.

I Auxiliary architectures or external knowledge on Transformer,
increasing computational costs or requiring extra resources.

I The over-parameterization of Transformer & Dropout
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Background

Transformer Architecture
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Figure 1: Transformer architecture.

I Each Transformer block contains:

• Multi-head Attention sub-layer

Attn(Q,K,V) = softmax(
QK>
√

dk
)V

• Position-wise Feed-Forward sub-layer

FFN(x) = max(0, xW1 + b1)W2 + b2

• Each sub-layer is followed by:

AddNorm(x) = LN(Add(x))
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Motivation

I Pre-experiments show Transformer is still overfitted even equipped with
default dropout.

BLEU
Transformer (default dropout: 0.3) 34.84
+attention dropout, activation dropout 35.46

Table 1: Pre-experiments on IWSLT14 De→En translation task.

One question:
I Can we achieve stronger or even state-of-the-art (SOTA) results

only relying on various dropout techniques instead of extra model
architecture design or knowledge enhancement?
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Proposed UniDrop

I UniDrop integrates three different-level dropout techniques from
fine-grain to coarse-grain, feature dropout, structure dropout, and data
dropout, into Transformer models.

• Feature dropout (FD): conventional dropout (Srivastava et al., 2014),
applied on hidden representations of networks.

• Structure dropout (SD): randomly drops some entire substructures or
components from the whole model.

• Data dropout (DD): randomly drops out some tokens in an input sequence.
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Feature Dropout
I FD-1 (attention dropout): applied to the attention weight A, A = QK>.
I FD-2 (activation dropout): applied after the activation function between

the two linear transformations of FFN sub-layer.
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Figure 2: Structure and overview of feature dropout.
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Feature Dropout
I FD-3 (query, key, value dropout): we add dropout to query Q, key K,

and value V before calculating attention.
I FD-4 (output dropout): we also apply dropout to the output features

before linear transformation for softmax classification.
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Figure 3: Structure and overview of feature dropout.
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Structure Dropout & Data Dropout

Structure Dropout
I We adopt LayerDrop (Fan et al., 2020a) as the structure dropout,

which drops some entire layers at training time and directly reduces the
Transformer model size.

Data Dropout
I Direct data dropout brings the risk of losing high-quality training

samples.
I We propose a two-stage data dropout strategy.

Two-stage data dropout strategy
Given a sequence, with probability pk, we keep the original sequence and do not
apply data dropout. If data dropout is applied, for each token, with another
probability p, we will drop the token.
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UniDrop Integration

I Theoretically demonstrate that the above three dropouts play different
roles in preventing Transformer from overfitting.

I UniDrop finally unites feature dropout, LayerDrop, and the two-stage
data dropout strategy into Transformer models.
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Figure 4: Different dropout components in UniDrop. The gray positions denote
applying the corresponding dropout.
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Neural Machine Translation

Datasets
I We conduct machine translation experiments on the widely

acknowledged IWSLT14 datasets1 with multiple language pairs,
including English↔German (En↔De), English↔Romanian (En↔Ro),
English↔Dutch (En↔Nl), and English↔Portuguese-Brazil (En↔Pt-br),
a total number of 8 translation tasks.

Datasets Train Dev Test
En↔De 160k 7k 7k
En↔Ro 180k 4.7k 1.1k
En↔Nl 170k 4.5k 1.1k

En↔Pt-br 175k 4.5k 1.2k

Table 2: Statistics for machine translation datasets.

1https://wit3.fbk.eu/mt.php?release=2014-01
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Neural Machine Translation

Model Configuration
I We use the transformer iwslt de en configuration2 for all

Transformer models.
I UniDrop configuration

• FD rates: 0.1
• SD rate: 0.1 (only applied on decoder)
• DD rates: the sequence keep rate pk = 0.5, token dropout rate p = 0.2

2https://github.com/pytorch/fairseq
Wu et al. NAACL-2021 May 12, 2021 16 / 27
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Neural Machine Translation

Main Results

En→De De→En En→Ro Ro→En En→Nl Nl→En Nn→Pt-br Pt-br→En Avg. 4
Transformer 28.67 34.84 24.74 32.14 29.64 33.28 39.08 43.63 33.25 -
+FD 29.61 36.08 25.45 33.12 30.37 34.50 40.10 44.74 34.24 +0.99
+SD 29.03 35.09 25.03 32.69 29.97 33.94 39.78 44.02 33.69 +0.44
+DD 28.83 35.26 24.98 32.76 29.72 34.00 39.50 43.71 33.59 +0.34
+UniDrop 29.99 36.88 25.77 33.49 31.01 34.80 40.62 45.62 34.77 +1.52
w/o FD 29.24 35.68 25.18 33.17 30.16 33.90 39.97 44.81 34.01 +0.76
w/o SD 29.92 36.70 25.59 33.26 30.55 34.75 40.45 45.60 34.60 +1.35
w/o DD 29.76 36.38 25.44 33.26 30.86 34.55 40.37 45.27 34.49 +1.24

Table 3: Machine translation results of different models on IWSLT14 translation
datasets. Avg. and4 denote the average results of the 8 translation tasks and
improvements compared with the standard Transformer. Best results are in bold.

Summary:
I Transformer+UniDrop achieves the most improvements across all translation

tasks, which demonstrates the effectiveness of UniDrop for the Transformer.

I Ablation study validates the necessity of FD, SD, and DD for UniDrop.
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Neural Machine Translation

Comparisons
Approaches BLEU
Adversarial MLE (Wang et al., 2019b) 35.18
DynamicConv (Wu et al., 2019) 35.20
Macaron (Lu et al., 2019) 35.40
IOT (Zhu et al., 2021) 35.62
Soft Contextual Data Aug (Gao et al., 2019) 35.78
BERT-fused NMT (Zhu et al., 2020) 36.11
MAT (Fan et al., 2020b) 36.22
MixReps+co-teaching (Wu et al., 2020) 36.41
Transformer 34.84
+UniDrop 36.88

Table 4: Comparison with existing works on IWSLT-2014 De→En translation task.

Summary:
I Transformer+UniDrop with dropout only outperforms the compared works

including the training algorithm design (Wang et al., 2019b), model architecture
design (Lu et al., 2019; Wu et al., 2019), and even BERT-fused model (Zhu
et al., 2020).
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Text Classification

Datasets
I We evaluate different methods on two groups of text classification

datasets. The first group is from GLUE tasks (Wang et al., 2019a). The
second group is some widely used text classification datasets in previous
works (Voorhees and Tice, 1999; Maas et al., 2011; Zhang et al., 2015).

Datasets Classes Train Dev
MNLI 3 393k 20k
QNLI 2 105k 5.5k
SST-2 2 67k 0.9k
MRPC 2 3.7k 0.4k
Datasets Classes Train Test
IMDB 2 25k 25k
Yelp 5 650k 50k
AG’s News 4 120k 76k
TREC 6 5.4k 0.5k

Table 5: Statistics for text classification datasets.
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Text Classification

Main Results

MNLI QNLI SST-2 MRPC
BiLSTM+Attn, CoVe 67.9 72.5 89.2 72.8
BiLSTM+Attn, ELMo 72.4 75.2 91.5 71.1
BERTBASE 84.4 88.4 92.9 86.7
BERTLARGE 86.6 92.3 93.2 88.0
RoBERTaBASE 87.1 92.7 94.7 89.0
+UniDrop 87.8 93.2 95.5 90.4

Table 6: Accuracy on GLUE tasks (dev set).

IMDB Yelp AG TREC
Char-level CNN - 62.05 90.49 -
VDCNN - 64.72 91.33 -
DPCNN - 69.42 93.13 -
ULMFiT 95.40 - 94.99 96.40
BERTBASE 94.60 69.94 94.75 97.20
RoBERTaBASE 95.7 70.9 95.1 97.6
+UniDrop 96.0 71.4 95.5 98.0

Table 7: Accuracy on the typical text
classification datasets.

Summary:
I UniDrop further improves the performance of Transformer models even using

strong RoBERTaBASE as backbone.
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Analysis

Overfitting

Figure 5: The dev loss of different models on IWSLT14 De→En translation task.

Summary:
I The standard Transformer is quickly overfitted during training.
I Transformer+UniDrop achieves the lowest dev loss and shows great advantage

to prevent Transformer from overfitting.
Wu et al. NAACL-2021 May 12, 2021 22 / 27



Analysis

Ablation Study
De→En En→De Ro→En

Transformer 34.84 28.67 32.14
+UniDrop 36.88 29.99 33.49
w/o FD-1 36.72 29.84 33.33
w/o FD-2 36.57 29.76 33.28
w/o FD-3 36.59 29.83 33.31
w/o FD-4 36.65 29.59 33.24
w/o 2-stage DD 36.61 29.78 33.12

Table 8: Ablation study of data dropout and different feature dropouts on IWSLT14
De→En, En→De, and Ro→En translation tasks.

Summary:
I In multi-head attention module, FD-3 brings more improvement than FD-1,

showing the insufficiency of only applying FD-1 for the Transformer.
I The model without 2-stage DD has the lower BLEU scores, indicating the

necessity of keeping the original sequence for data dropout.
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Analysis

Effects of Different Dropout Rates

表格 1

0 0.1 0.2 0.3 0.4

FD dev 36.94 38.00 37.30 35.29

35.68 36.88 36.33 34.71

SD dev 37.91 38.00 37.72 36.70

36.70 36.88 36.59 35.65

DD dev 37.52 37.80 38.00 37.87 37.69

36.38 36.74 36.88 36.75 36.55

BL
EU

 s
co

re

34.5

35.5

36.5

37.5

38.5

0 0.1 0.2 0.3

Dev Test

BL
EU

 s
co

re

34.5

35.5

36.5

37.5

38.5

0 0.1 0.2 0.3

Dev Test

BL
EU

 s
co

re

34.5

35.5

36.5

37.5

38.5

0 0.1 0.2 0.3 0.4

Dev Test

(a). Varying FD rate. (b). Varying SD rate. (c). Varying DD rate.

1

Figure 6: The BLEU scores of Transformer+UniDrop on IWSLT14 De→En
translation dev set and test test, with varying the rates of FD, SD and DD respectively.

Summary:
I The performance first increases then decreases when varying the dropout rates

from small to large.
I Change of FD dropout rate makes the most significant impact on the model

performance since FD contains four feature dropout positions.
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Conclusions

I We introduce UniDrop to unite three different level dropout techniques,
i.e., feature dropout, structure dropout, and data dropout, into a robust
one for Transformer.

I We theoretically demonstrate that the three dropouts play different roles
in regularizing Transformer model and improving the robustness of the
model.

I Extensive results indicate that Transformer models with UniDrop can
achieve strong or even SOTA performances on sequence generation and
classification tasks.
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